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The evolution of a time-developing mixing layer with cross-shear is simulated numerically using
a pseudo-spectral method. The results indicate that stretching by the rollers is responsible for
the formation of the streamwise vortices in a mixing layer with cross-shear. When the
cross-shear is relatively strong (such as 0 = 20°), the co-rotating streamwise vortices related to
the early spanwise Kelvin-Helmholtz instability are intensified rapidly by stretching and
collapse into rib-shaped vortices, which are very similar to the ribs in a plane mixing layer. At
0 = 20°, the vortex corresponding to the “quadrupole” in a plane mixing layer is also observed
in the core region, and a set of streamwise vortices with signs opposite to those of the vortices
containing the ribs lie at the spanwise braid region. The counterparts of the ribs, however, are of
flat shape and much weaker. When 0 is up to 30°, the ribs are so strong that their counterparts
cannot develop. When 0 is down to 10°, the symmetry of the streamwise vortices is more
obvious, but the ribs do not form. Additionally, it is revealed that the introduction of the strong
cross-shear results in enhanced mixing compared to a two-dimensional mixing layer.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

THE MIXING LAYER IS AN IMPORTANT MODEL for the study of turbulence in free shear layers and
is commonly encountered in various natural flows and industrial equipment such as
a combustor. Hence, investigations on the coherent structures in mixing layers are of great
significance from both theoretical and practical points of view and have aroused consider-
able attention among turbulence researchers over the past three decades. Extensive experi-
mental [see, e.g., Lasheras & Choi (1988)] and numerical [see, e.g., Rogers & Moser (1992)]
studies show that there are coherent structures in a plane mixing layer, known as the
spanwise vortices (rollers) as a result of Kelvin-Helmholtz instability and the secondary
counter-rotating streamwise vortices (ribs) caused by the stretching of the spanwise vortices.
The quadrupoles with sign opposite to that of the ribs are also important streamwise
vortices. They develop at the core region and are mainly responsible for the evolution of the
rollers into cup-shaped vortices, as shown in the work of Rogers & Moser (1992) (referred to
as RM henceforth). More recently, Leboeuf & Mehta (1996) have observed the quadrupoles
in their experiments.

The vortical structures mentioned above are discovered in a plane mixing layer, in which
the top and bottom streams are parallel to each other. If the two streams are not parallel,
the flow will undergo cross-shear. It is necessary to understand the features and the
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formation mechanics of the coherent structures in this special flow because it is common in
flows of ocean and air currents. So far, however, few studies have been performed on it.
Lin & Wei (1993) and Lin & Wang (1997) conducted the experiments and the numerical
simulations, but they did not present the characteristics of the coherent structures. The main
achievements have been attained by Atsavapranef & Gharib (1994) (referred to as hence-
forth AG). They did the experiments in a flat tank and made stratified mixing layer flows
with cross-shear by tilting the tank. AG observed a new type of structure, namely co-
rotating streamwise vortices, which first appeared in the braids and then extended toward
the cores. Although their results indicate that the wave number of the spanwise instability
nearly equals that of the primary Kelvin-Helmholtz instability and the streamwise vortices
can pair, like the spanwise rollers, AG suggested that the flows are not two separate and
independent sets of perpendicular Kelvin-Helmholtz instability superimposed upon each
other; rather, the streamwise vortices are manifestations of an instability of the
Kelvin-Helmholtz braid. However, AG neither discussed the mechanics of the braid
instability nor presented the detailed streamwise vortical structures (it is a difficult task in
experimental studies). Here, we simulate the formation and evolution of the coherent
structures in a mixing layer with cross-shear of various intensities numerically and analyse
the mechanics for the formation of secondary structures.

2. NUMERICAL MODEL

Figure 1 shows a schematic of a mixing layer with cross-shear. Here, let 20 designate the
intersection angle of the two streams. For convenience in describing, we refer to the main
shear direction (X) as streamwise and another shear direction (Z) as spanwise, the terms
borrowed from a plane mixing layer. A time-developing mixing layer can be taken as the
numerical model in this study, because it may be thought of as an approximation to the
evolution of a single set of flow structures as they are convected downstream in the spatially
developing mixing layer as suggested by RM, and a similar evolution of vortical structures
also exists in a cross-shear mixing layer. Periodic boundary conditions can be imposed in
the streamwise and spanwise directions for a time-developing mixing layer. The spatially
developing mixing layers are more common, however, the experimental model of AG is
closer to the time-developing flow. Therefore, a comparison between the results of this
paper and AG is reasonable.

The main stream velocity difference U is taken as the characteristic velocity, and twice the
initial momentum thickness d, as the characteristic length; thus, the Reynolds number is
defined by Re = Udy/v.

The initial streamwise and spanwise velocity fields are given respectively, as follows:

u = cos(0)[0-5 tanh(y) + AR(P'(y)e'™)], (1)
w = sin(0)[0-5 tanh(y) + AR(¢'(y)e'*?)], 2
Y
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Figure 1. Schematic of a mixing layer with cross-shear.
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where A is the disturbance amplitude, « the streamwise wave number, and f the spanwise
wave number; ¢ denotes the normalized eigenfunction, which can be derived from linear
stability theory. The symbol ‘R signifies the real part for a complex function, and the prime
designates differentiation. In this study, the value of « is set to be 0-4446 and that of f§ is set
to be 0-5. We fix A = 0-1 throughout this paper.

In the experiments of AG, the very low and broad-band disturbances are introduced
naturally, whereas in this paper, just low wave number disturbances with a certain form are
imposed initially. However, it does not make a large difference for the evolution of mixing
layer. The choice of the streamwise and spanwise wavelengths in this paper is suitable
because the momentum thickness grows fastest for the case when the two wavelengths are of
the same order, and the most amplified disturbance predominates in the evolution of
a mixing layer. Additionally, a small disturbance method is used in the study of spanwise
and streamwise instabilities in this paper. Therefore, Fourier mode energies are not
examined, but may be helpful in the study of instability.

To simplify the computation, we impose the periodic condition in the transverse direction
by introducing the image flows far enough from the mixing layer centre. The streamwise
period L,is taken to be 2m/a, the transverse period L, is 32, and spanwise period Lj is 2m/f.

The governing equations are

3)

GV |V &l %4
— | =VXxXw+— 4
6t < 2 > Re @
The passive scalar is determined from
oT V2T
— + V.VT = 5
ot v Pe’ )

where Pe denotes Peclet number, defined by Pe = ReSc, here Sc =v/y (y being the
molecular diffusivity of the scalar). The value of Re and Sc are taken to be 200 and 2,
respectively, in the paper.

The initial passive scalar is given by

T = 0-5(1 + tanh y). (6)

Equations (3)—(5) are solved with the standard pseudo-spectral method; equations (4) and
(5) are advanced in time with the Adams-Bashforth-Crank-Nicolson scheme. The time
step, the period in the transverse direction and the number of Fourier modes are fixed to be
0-05, 32 and 64 x 128 x 64, respectively. The above parameters are chosen after a number of
preliminary tests and are based on the following two considerations. One is making the
resolution to a large extent dictated by the available computational resources. The other is
ensuring the convergence of computation. The values of time step, L,, and the mesh size
used in our study are appropriate because they not only result in modest computation but
ensure enough accuracy in the solution. In fact, we can refer to the work of Azaiez & Homsy
(1994) (referred to as AH below) and Kumar & Homsy (1999) (KH) on the choice of these
values since their models are similar to ours, except that we considered the cross-shear case.
AH typically used 0-04, 8 and 128 x 128 to simulate the roll-up of 2-D viscoelatic mixing
layers and KH used 0-02, 12 and 128 x 128 x 64 for the 3-D Newtonian case. They employed
a little bit finer time step and mesh size as compared to ours; but we found dt = 0-05 is small
enough, which is understandable since we used a second-order accurate time scheme. Our
mesh resolution is also sufficient since we used the spectral method and actually most of
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energy of the fluid field is contributed by very low wave number modes before the advent of
turbulence. KH chose L, = 12, which is much smaller than ours (32) but may be enough for
their study, as they only focused on the linear instability phase. The value L, = 32 is large
enough for the study of the non-linear instability before turbulence appears, which is what
we examined in our study.

3. RESULTS AND DISCUSSION

We analyse the vortical structure in reference to vorticity contours on the following four
planes: X = 0 (middle at the streamwise braids), X = L;/2 (middle at the streamwise cores),

0
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Figure 2. Contours of the streamwise vorticity at 6 = 20°: (a) t = 50, on X = 0 plane, minimum contour = 0-05,
maximum contour = 1-55; (b) t = 50, on X = L;/2 plane, minimum contour = — 0-38, maximum contour = 1-09;
(c) t =50, on Z = L3/2 plane, minimum contour = — 0-38, maximum contour = 1-58; (d) t = 60, on X = 0 plane,
minimum contour = — 0-37, maximum contour = 1-36;(e) t = 60, on X = L,/2 plane, minimum contour = — 0-66,
maximum contour = 0-88; (f) t = 60, on Z = 0 plane, minimum contour = — 0-30, maximum contour = 0-42.

(a) (b) (c)

Figure 3. Contours of the streamwise vorticity at § = 20° (comparing with Figure 2): (a) t = 60, on X = 0 plane,
minimum contour = — 0-37, maximum contour = 1-37; (b) t = 60, on X = L,/2 plane, minimum contour = — 0-66,
maximum contour = 0-89; (c) t = 60, on Z = 0 plane, minimum contour = — 0-30, maximum contour = 0-42.
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Z =0 (middle at the spanwise braids) and Z = L;/2 (middle at the spanwise cores).
Actually, the contours on these plane can reflect the main characteristics of the vortices.
Figure 2 shows the contours of streamwise vorticity for § = 20° at t = 50 and 60. We also
did a convergence test by varying the mesh size (e.g., 128 x 128 x 64, a finer mesh than that
limited by our computer resources); Figure 3 shows the results corresponding to Figure 2.
Quantitative differences among them were found to be small, by comparing the two figures,
which demonstrates that calculations have converged. The contours of spanwise vorticity
are shown in Figure 4. Figures 5 and 6 are the vorticity contours for 6 = 10 and 30°,
respectively. The value of 6 determines the intensity of cross-shear. “The braids” (or the
“cores”), when not specified, means “the streamwise braids” (or “the streamwise cores”) in
what follows.

For 0 = 20°, the co-rotating concentrated streamwise vortices have appeared at the
braids by t = 50 (Figure 2), extending to the cores roughly along the edge of the rollers
(direction of the stretching axes). The structures are very similar to the ribs in a plane mixing
layer (see RM). Moreover, the streamwise vortices in the cores are also similar to the
quadrupoles. These similarities indicate that the stretching by the spanwise vortices, not the
spanwise Kelvin-Helmholtz instability, is responsible for the formation of the streamwise
vortices in a mixing layer with cross-shear. The experiments of AG substantiate this point.
As mentioned in the introduction herein, AG found that the co-rotating streamwise vortices
first appear in the braids and then extend toward the cores. Hence, AG suggested that the
flows are not two separate and independent sets of perpendicular Kelvin-Helmholtz
instabilities superimposed upon each other; rather, the streamwise vortices are manifesta-
tions of an instability of the Kelvin-Helmholtz braid. It is well-known that the braids are
regions of the most intense stretching. For a plane mixing layer, the disturbances of
a sine/cosine type in the spanwise direction will evolve into the counter-rotating streamwise
pairs by stretching, and the structures are spanwise symmetric. When cross-shear is
introduced, it is conceivable that Kelvin-Helmholtz instabilities occur in two directions in
the early stages since the intensity is the sole difference. The spanwise vortices roll up firstly
because of the predominance in the streamwise direction, which produces strong stretching
and causes the rapid development of the streamwise vortices. However, the streamwise
structures formed are different with different intensities of cross-shear.

When the cross-shear is weak, the initial spanwise Kelvin-Helmholtz instability is also
weak, and the streamwise vortices resemble those in a plane mixing layer in that the
symmetry develops to some extent. For 8 = 10°, the co-rotating streamwise vortices related
to the initial spanwise Kelvin—-Helmholtz instability appear on the X = 0 plane at t = 50,
but they are clearly weak (Figure 5). By t = 80, the counter-rotating vortices have emerged
at the spanwise braids on the X =0 plane, and the symmetry of the structures is more
obvious at the cores. Additionally, the strong and concentrated circular vortices cannot
form. Consequently, the main role of weak cross-shear is that it delays the development of
symmetric structures in a plane mixing layer and especially inhibits the formation of the ribs.

When the cross-shear is strong enough (such as 6 = 30°), the spanwise Kelvin-Helmholtz
instability produces the relatively strong co-rotating streamwise vortices, which collapse
quickly into the ribs by stretching (Figure 6). The co-rotating ribs are so predominant that
their counterparts are completely inhibited. Furthermore, they stretch the streamwise
vortices between them in the cores into a flat shape (t = 80 in Figure 6).

The vortical structures for 0 = 20° have similar features as those of the above two cases.
The co-rotating ribs have formed by t = 50 (Figure 2) and then there is a tendency for the
streamwise structures to develop towards the symmetric type. The counterparts of the ribs
can be observed at t = 60 in Figure 4. They, however, cannot collapse, being flat in shape
and much weaker.
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Figure 4. Contours of the spanwise vorticity at 6 =20 (a) t =50, on Z = L3/2 plane, minimum con-
tour = — 0-50, maximum contour = 0-22; (b) t = 50, on X = L,/2 plane, minimum contour = — 0-52, maximum
contour = 0-14; (¢) t = 60, on X = L,/2 plane, minimum contour = — 0-67, maximum contour = 0-34.
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Figure 5. Contours of the streamwise vorticity at = 10°: (a) t = 50, on X = 0 plane, minimum contour = 0-05,
maximum contour = 0-41; (b) t = 80, on X =0 plane, minimum contour = — 0-55, maximum contour = 0-66;
(c) t =80, on X = L;/2 plane, minimum contour = — 0-38, maximum contour = 0-53.

(a) (b) (c)

Figure 6. Contours of the streamwise vorticity at 0 = 30°: (a) t = 40, on X = 0 plane, minimum contour = 0-05,
maximum contour = 1-16; (b) t = 70, on X = 0 plane, minimum contour = — 0-30, maximum contour = 0-82; (c)
t =80, on X = L,/2 plane, minimum contour = — 1-20, maximum contour = 1-07.

The cross-shears of different intensities result in the streamwise structures of different
types, and thereby cause the distinct spanwise structures due to strong interactions of the
streamwise and spanwise vortices. The stretching and wrapping of the spanwise vortices by
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Figure 7. Contours of the passive scalar on X = 0 plane (0 = 20°, t = 50): (a) result of numerical simulation;
(b) experimental streaks (from AG) showing the co-rotating streamwise vortices.

the streamwise ones is most notable. In the case of 0 = 20°, the ribs apparently wrap the
spanwise vorticity around them and induce the spanwise vorticity with sign opposite to that
of the rollers (Figure 4). Meanwhile, the spanwise vorticity at the core region between the
ribs and the quadrupoles grows because of their stretching, which is just the reason for the
formation of the cup-shaped vortices in a plane mixing layer.

As a result, not only the mechanics for the formation of the streamwise vortices, but also
that for the interaction of the vortices, is the same for a mixing layer with and without
cross-shear. However, the introduction of cross-shear destroys the symmetry of the struc-
tures and renders the structures more complex.

Figure 7 shows the contours of the passive scalar calculated here att = 50 for 0 = 20° and
the experimental streaks from AG. Both reveal the co-rotating and concentrated streamwise
vortices, indicating that our results are reasonable.

AG found that the co-rotating streamwise vortices can result in an enhanced mixing,
however, they form only when cross-shear is introduced after the primary shear layer has
started to roll-up. The reason, they suggested, is that the streamwise vortices are an
instability of the braid, and the braid needs to be setup in order for the streamwise
instability to develop. Moreover, the level of cross-shear is high enough (ratio to that of
main shear is larger than 0-15 for the case examined) to induce them. Our calculated results
confirm that the strong co-rotating streamwise vortices (ribs) can not form for the weak
cross-shear; however, they discredit the first condition above because cross-shear is intro-
duced at the initial time for each case in this study. From a theoretical perspective, our
results are more reasonable, because the forming rollers can also produce strong stretching
at the forming braids. The disagreement is not surprising, since the experimental and the
simulated flows are not completely consistent; for instance, the former is a type of stratified
flow and not subjected to forced disturbances.

The study by AG quantifies mixing by computing the mixed-fluid thickness in terms of
the density field on a plane (for its physical meaning, see AG). Here, we define it in terms of
the three-dimensional passive scalar field as

5 JLZ/z jé,jng(T — T)T, — T)dxdz + j’a‘f?H(T — T)T — T,)dxdz a. 7

2 [0 fBH(T — TYT, — T)dxdz + [ [=H(T — TXT — Ty)dxdz

in which T,, T, and T represent the levels of the passive scalar for the top and bottom fluids,
and their average, respectively. In this study, T, =1, T, =0 and T = 0-5, according to
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Figure 8. Time development of the mean momentum thickness d, and the mixed-fluid thicknessd,,.

equation (6). The term H is the Heaviside step function, defined as

-4 1= ®
o f<o.
The mean momentum thickness, similar to the no-cross-shear mixing layer [e.g., see
Rogers & Moser (1992)], is defined as

+ oo

Og = f (0.25 — U?)dy, )
— 0

where U denotes the total mean velocity.

Figure 8 shows the time developments of mean momentum thickness and mixed-fluid
thickness in a mixing layer with cross-shear and a two-dimensional one. Compared to the
two-dimensional case, the two thicknesses grow more rapidly after roll-up for the strong
cross-shear case, whereas there is no gain in mixing for the weak cross-shear case. This is
consistent with the results of AG.

4. CONCLUSIONS

From the foregoing discussion, stretching by the rollers is responsible for the formation of
the streamwise vortices in a mixing layer with cross-shear. When the cross-shear is relatively
intense (such as 0 = 20°), the co-rotating streamwise vortices related to the early spanwise
Kelvin-Helmholtz instability are intensified rapidly by stretching and collapse into
rib-shaped vortices, which are very similar to the ribs in a plane mixing layer. At 8 = 20°,
the vortex corresponding to the “quadrupole” in a plane mixing layer is also observed in the
core region, and a set of streamwise vortices with signs opposite to those of the vortices
containing the ribs lie at the spanwise braid region. The counterparts of the ribs, however,
are flat in shape and much weaker. When 6 is up to 30°, the ribs are so strong that their
counterparts cannot develop. When 0 is down to 10°, the symmetry of the streamwise
vortices is more obvious, but the ribs do not form. Consequently, introducing weak
cross-shear is not judicious if enhancing mixing is of interest, since the ribs play an
important role in mixing. Additionally, the computations reveal that the introduction of the
strong cross-shear results in enhanced mixing compared to a two-dimensional mixing layer.
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